80
3.6 Break-statements and Continue-statements

Break-statements

Both for-loops and while-loops are set up to exit only at the beginning or end
of the loop. Once we start executing the body, the entire body is executed.
Sometimes that isn’t what you need to do. Suppose, for example, that you
have a loop that reads names, and follows each name with a greeting. Suppose
further that we want the loop to end when we get the empty string for a name.
Since this is an indefinite situation (we don’t know in advance how many names
we will see, we need a while-loop for this. It is tempting to write the following
code:

done = False

while not done:
name = input("Enter a name: ")
print ("Hi %s!” % name)
if name = "":

done = True

This works, to some extent, but when we enter the empty string to exit it still
prints

"Hi "
What we really want is to check the exit condition as soon as we read the name,
and to leave the loop as soon as this condition becomes True. Since the loop
only checks this condition at the top, we need to put the rest of the loop body
inside an if-statement:

done = False
while not done:
name = input("Enter a name: ")
if name = "":
done = True
else:
print("Hi %s!" % name)

For a short loop this is simple and clear. As our programs become more
complicated, it will sometimes be useful to exit from a loop immediately without
putting the rest of the loop in a conditional statement. The break-statement is
designed for this. The statement break causes execution to immediately leave
the innermost loop in which it occurs. For example, the loop above could be
written:

3.6. BREAK-STATEMENTS AND CONTINUE-STATEMENTS 81

while True:
name = input("Enter a name: ")
if name = "":
break
print ("Hi %s!” % name)

The "while True” header of this loop indicates that the loop body will handle
the termination of the loop with a break-statement. Note that there is no
else-clause on the if-statement. This isn’t needed, because if the condition is
True we will exit from the loop and never get to the print-statement.

Break-statements work with for-loops just as they do with while-loops. For
example, the following code will print a statement about sending money to John
and Paul, but not to George or Ringo:

for name in ["John", "Paul”, " George", "Ringo"]:
if name = " George" :
break

print("Send money to %s” % name)

If your code has loops inside loops, break-statements only exit from the
innermost loop inside which they occur. Consider the following code fragment:

while True:

name = input("Enter a name: ")
if name — "":

break
firstName =
for letter in name:

if letter = " "

break

firstName = firstName + letter

print(firstName)

non

Here there are two loops. The outer loops handles the input of names, and exits
when it sees a blank name; the first break-statement handles this termination.
The second loop, inside the first, builds up a string firstName by walking along
the letters of name until it gets to the end or to a blank. When it gets to a
blank, the break-statement exits it from the inner loop, causing firstName to
be printed, but the outer loop is not ended, so the program will again ask for
another name.

Continue-statements

It is very common for a loop to generate values (perhaps by asking the user for
them) and then do something with these values. For certain values there might
not be anything to do. The continue-statement is designed for this situation.

82

When a continue-statement is executed, control goes back to the top of the
loop. For example, the following code prints the odd numbers between 1 and
10:

for x in range(1l, 10):
if x % 2 = 0:
continue
print(x)
In practice continue-statements are used less frequently than break-statements

but they are occasionally handy. Of course, we could always get the same effect
with a conditional statement:

for x in range(1l, 10):
if x% 2 1= 0:
print(x)

